Exercise 18

A freshly brewed cup of coffee has temperature $95^{\circ} \mathrm{C}$ in a $20^{\circ} \mathrm{C}$ room. When its temperature is $70^{\circ} \mathrm{C}$, it is cooling at a rate of $1^{\circ} \mathrm{C}$ per minute. When does this occur?

Solution

Assume that the rate of decrease of the corpse's temperature is proportional to the difference between the corpse's temperature and the surrounding temperature T_{s}.

$$
\frac{d T}{d t} \propto-\left(T-T_{s}\right)
$$

The minus sign is included so that when the surroundings are cooler (hotter) than the corpse, $d T / d t$ is negative (positive). Change this proportionality to an equation by introducing a positive constant k.

$$
\frac{d T}{d t}=-k\left(T-T_{s}\right)
$$

To solve this differential equation for T, make the substitution $y=T-T_{s}$.

$$
\frac{d T}{d t}=-k y
$$

Differentiate both sides of the substitution with respect to t to write the derivative in terms of y : $\frac{d y}{d t}=\frac{d}{d t}\left(T-T_{s}\right)=\frac{d T}{d t}$.

$$
\frac{d y}{d t}=-k y
$$

Divide both sides by y.

$$
\frac{1}{y} \frac{d y}{d t}=-k
$$

Rewrite the left side by using the chain rule.

$$
\frac{d}{d t} \ln y=-k
$$

The function you take a derivative of to get $-k$ is $-k t+C$, where C is any constant.

$$
\ln y=-k t+C
$$

Exponentiate both sides to get y.

$$
\begin{aligned}
e^{\ln y} & =e^{-k t+C} \\
y & =e^{C} e^{-k t}
\end{aligned}
$$

Use a new constant A for e^{C}.

$$
y(t)=A e^{-k t}
$$

Now that the differential equation has been solved, change back to the original variable T, the corpse's temperature.

$$
T-T_{s}=A e^{-k t}
$$

As a result,

$$
T(t)=T_{s}+A e^{-k t} .
$$

Since the room's temperature is $20^{\circ} \mathrm{C}, T_{s}=20$.

$$
T(t)=20+A e^{-k t}
$$

Use the fact that the cup's initial temperature is $95^{\circ} \mathrm{C}$.

$$
95=20+A e^{-k(0)} \quad \rightarrow \quad A=95-20=75
$$

Consequently,

$$
T(t)=20+75 e^{-k t} .
$$

Use the two given pieces of information to construct a system of equations for k and t, that is, that when the rate of change of the temperature is -1 the temperature is 70 .

$$
\left\{\begin{array} { l }
{ T (t) = T _ { s } + A e ^ { - k t } } \\
{ \frac { d T } { d t } = - k (T - T _ { s }) }
\end{array} \Rightarrow \left\{\begin{array}{l}
70=20+75 e^{-k t} \\
-1=-k(70-20)
\end{array}\right.\right.
$$

Solve the second equation for k.

$$
\begin{gathered}
1=k(50) \\
k=\frac{1}{50}=0.02
\end{gathered}
$$

Then plug it into the first equation and solve for t.

$$
\begin{gathered}
70=20+75 e^{-(0.02) t} \\
50=75 e^{-0.02 t} \\
\frac{50}{75}=e^{-0.02 t} \\
\ln \frac{50}{75}=\ln e^{-0.02 t} \\
\ln \frac{2}{3}=(-0.02 t) \ln e \\
t=-\frac{\ln \frac{2}{3}}{0.02} \approx 20.2733 \text { minutes }
\end{gathered}
$$

Find out how many seconds 0.2733 minutes is.

$$
0.2733 \text { minutes } \times \frac{60 \text { seconds }}{1 \text { minute }} \approx 16.398 \text { seconds }
$$

Therefore, it takes about 20 minutes and 16 seconds for the coffee's temperature to go from $95^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in a $20^{\circ} \mathrm{C}$ room.

